Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ChemSusChem ; 15(24): e202201323, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36214486

RESUMO

Oxygen is a molecule of utmost importance in our lives. Beside its vital role for the respiration and sustaining of organisms, oxygen is involved in numerous chemical and physical processes. Upon combination of the different forms of molecular oxygen species with various activation modes, substrates, and reaction conditions an extremely wide chemical space can be covered that enables rich applications of diverse oxygenation processes. This Review provides an instructive overview of the individual properties and reactivities of oxygen species and illustrates their importance in nature, everyday life, and in the context of chemical synthesis.


Assuntos
Oxigênio , Oxigênio/química
2.
ChemSusChem ; 14(16): 3325-3332, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34184836

RESUMO

The upcycling of waste biomass into valuable materials by resource-efficient chemical transformations is a prime objective for sustainable chemistry. This approach is demonstrated in a straightforward light-driven synthesis of polyols and polyurethane foams from the multi-ton waste products of cashew nut processing. The photo-oxygenation of cardanol from nutshell oil results in the formation of synthetically versatile hydroperoxides. The choice of the workup method (i. e., reduction, hydrogenation, epoxidation) enables access to a diverse range of alcohols with tunable alkene and OH functions. Condensation with isocyanates to give rigid polyurethane foams provides a resource-efficient waste-to-value chain that benefits from the availability of cardanol and installation of OH groups from aerial O2 .

3.
Polymers (Basel) ; 13(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801930

RESUMO

CeO2 nanoparticles were incorporated in waterborne binders containing high biobased content (up to 70%) in order to analyze the anticorrosion performance for direct to metal coatings. Biobased binders were synthesized by batch miniemulsion polymerization of 2-octyl acrylate and isobornyl methacrylate monomers using a phosphate polymerizable surfactant (Sipomer PAM200) that lead to the formation of phosphate functionalized latexes. Upon the direct application of such binders on steel, the functionalized polymer particles were able to interact with steel, creating a thin phosphatization layer between the metal and the polymer and avoiding flash rust. The in situ incorporation of the CeO2 nanoparticles during the polymerization process led to their homogeneous distribution in the final polymer film, which produced outstanding anticorrosion performance according to the Electrochemical Impedance Spectroscopy measurements. In fact, steel substrates coated with the hybrid polymer film (30-40 µm thick) showed high barrier corrosion resistance after 41 days (~1000 h) of immersion in NaCl water solution and active inhibition capabilities thanks to the presence of the CeO2 nanoparticles. This work opens the door to the fabrication of sustainable hybrid anticorrosion waterborne coatings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...